Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38712203

RESUMO

The ocular surface is a mucosal barrier tissue colonized by commensal microbes, which tune local immunity by eliciting IL-17 from conjunctival γδ T cells to prevent pathogenic infection. The commensal Corynebacterium mastitidis ( C. mast ) elicits protective IL-17 responses from conjunctival Vγ4 T cells through a combination of γδ TCR ligation and IL-1 signaling. Here, we identify Vγ6 T cells as a major C. mast -responsive subset in the conjunctiva and uncover its unique activation requirements. We demonstrate that Vγ6 cells require not only extrinsic (via dendritic cells) but also intrinsic TLR2 stimulation for optimal IL-17A response. Mechanistically, intrinsic TLR2 signaling was associated with epigenetic changes and enhanced expression of genes responsible for metabolic shift to fatty acid oxidation to support Il17a transcription. We identify one key transcription factor, IκBζ, which is upregulated by TLR2 stimulation and is essential for this program. Our study highlights the importance of intrinsic TLR2 signaling in driving metabolic reprogramming and production of IL-17A in microbiome-specific mucosal γδ T cells. Summary: The ocular commensal Corynebacterium mastitidis ( C. mast ) induces the IL-17 responses from γδ T cells by activating TLR2 signaling. γδ T cell-intrinsic TLR2 stimulation promotes fatty acid oxidation and increases IL-17A transcription, favoring IL-17A responses. Highlights: (1) TLR2-deficient mice exhibit reduced γδ T cell responses to ocular commensal bacteria.(2) γδ T cell-intrinsic TLR2 deficiency causes defects of fatty acid oxidation and IL-17A production in a γδ subset-specific manner.(3) The transcription factor, IκBζ is upregulated by TLR2 stimulation and supports γδ IL-17A production through fatty acid oxidation.

2.
Int Immunopharmacol ; 134: 112172, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703566

RESUMO

BACKGROUND: The clinical significance and comprehensive characteristics of chemokines and chemokine receptors in colorectal cancer (CRC) have not been previously reported. Our study aims to investigate the expression profiles of chemokines and chemokine receptors, as well as establish subtypes in CRC. METHODS: 1009 CRC samples were enrolled in our study. Consensus unsupervised clustering analysis was conducted to establish subtypes, and a risk score model was developed using univariate Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. 36 pairs of tissue specimens of CRC patients and two CRC cell lines were used to validate the subtypes and risk score in vitro. Quantitative real-time PCR and western blotting were employed to validate mRNA and protein expression levels, respectively. Flow cytometry was utilized for analyzing cell apoptosis, while cell viability assay and EdU assay were conducted to assess cell proliferation ability. RESULTS: The Cluster B group shares similarities with the low-risk group in terms of exhibiting a higher level of immune cell infiltration and belonging to hot tumor. Patients CRC in the Cluster B group demonstrate a more favorable prognosis and exhibit better response to immunotherapy and chemotherapy. On the other hand, the Cluster A group resembles the high-risk group as it displays lower levels of immune cell infiltration, indicating a cold tumor phenotype. CRC patients in the Cluster A group have poorer prognoses and show less therapeutic efficacy towards immunotherapy and chemotherapy. Furthermore, we utilized a total of 36 pairs of tissue samples obtained from patients with CRC, along with two CRC cell lines for validation in vitro. This comprehensive approach further enhances the scientific validity and reliability of the identified subtypes and risk score in their ability to predict prognosis, response to immunotherapy, and response to chemotherapy among CRC patients. CONCLUSION: We first established robust prognostic subtypes based on chemokines and chemokine receptors, which could potentially serve as a novel biomarker for guiding individualized treatment in patients with CRC undergoing immunotherapy and chemotherapy.

3.
Cell Death Dis ; 15(4): 288, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654006

RESUMO

Cancer stem cells (CSCs) are believed to be responsible for cancer metastasis and recurrence due to their self-renewal ability and resistance to treatment. However, the mechanisms that regulate the stemness of CSCs remain poorly understood. Recently, evidence has emerged suggesting that long non-coding RNAs (lncRNAs) play a crucial role in regulating cancer cell function in different types of malignancies, including gastric cancer (GC). However, the specific means by which lncRNAs regulate the function of gastric cancer stem cells (GCSCs) are yet to be fully understood. In this study, we investigated a lncRNA known as HNF1A-AS1, which is highly expressed in GCSC s and serves as a critical regulator of GCSC stemness and tumorigenesis. Our experiments, both in vitro and in vivo, demonstrated that HNF1A-AS1 maintained the stemness of GC cells. Further analysis revealed that HNF1A-AS1, transcriptionally activated by CMYC, functioned as a competing endogenous RNA by binding to miR-150-5p to upregulate ß-catenin expression. This in turn facilitated the entry of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway and promote CMYC expression, thereby forming a positive feedback loop that sustained the stemness of GCSCs. We also found that blocking the Wnt/ß-catenin pathway effectively inhibited the function of HNF1A-AS1, ultimately resulting in the inhibition of GCSC stemness. Taken together, our results demonstrated that HNF1A-AS1 is a regulator of the stemness of GCSCs and could serve as a potential marker for targeted GC therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas , RNA Longo não Codificante , Neoplasias Gástricas , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1-alfa Nuclear de Hepatócito/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt/genética
4.
Carbohydr Polym ; 335: 122046, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616085

RESUMO

Currently, purification step in the recombinant protein manufacture is still a great challenge and its cost far outweighs those of the upstream process. In this study, a functionalized cellulose-based monolith was constructed as an efficient affinity adsorbent for one-step purification of recombinant proteins. Firstly, the fundamental cellulose monolith (CE monolith) was fabricated based on thermally induced phase separation, followed by being modified with nitrilotriacetic acid anhydride through esterification to give NCE monolith. After chelating with Ni2+, the affinity adsorbent NCE-Ni2+ monolith was obtained, which was demonstrated to possess a hierarchically porous morphology with a relatively high surface area, porosity and compressive strength. The adsorption behavior of NCE-Ni2+ monolith towards ß2-microglobulin with 6 N-terminus His-tag (His-ß2M) was evaluated through batch and fixed-bed column experiments. The results revealed that NCE-Ni2+ monolith exhibited a relatively fast His-ß2M adsorption rate with a maximum adsorption capacity of 329.2 mg/g. The fixed-bed column adsorption implied that NCE-Ni2+ monolith showed high efficiency for His-ß2M adsorption. Finally, NCE-Ni2+ monolith was demonstrated to have an excellent His-ß2M purification ability from E. coli lysate with exceptional reusability. Therefore, the resultant NCE-Ni2+ monolith had large potential to be used as an efficient adsorbent for recombinant protein purification in practical applications.


Assuntos
Escherichia coli , Separação de Fases , Adsorção , Celulose , Proteínas Recombinantes/genética
5.
RSC Adv ; 14(17): 11877-11884, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623297

RESUMO

Magnesium-aluminum (Mg-Al) alloys are widely used in aerospace, automobile and medical equipment owing to their advantages of easy casting, high strength-to-mass ratio and good biocompatibility. The structural, mechanical, electronic and thermodynamic properties of MgxAly alloys (x + y = 16, x = 1, 2,…, 15) with varying Al-doping contents were studied using the first-principles method. In this work, the structures of MgxAly alloys were constructed by replacing Mg atoms in a supercell with Al atoms. The lattice parameters of the Al-doped MgxAly alloys decrease with an increasing Al content because of the smaller atomic size of Al than that of Mg. The calculated formation energies show that Mg11Al5, Mg5Al3 and Mg9Al7 have prominent structural stability. The analyses of the mechanical properties reveal that the doping of Al improves the ductility of MgxAly alloys. The elastic moduli increase with an increasing Al content, and Mg9Al7 has a notable ability to resist deformation, while Mg11Al5 and Mg5Al3 have better plasticity. The calculated results of their electronic properties reveal that Mg11Al5, Mg5Al3 and Mg9Al7 are good conductors without magnetism. Furthermore, CDD analyses show that the inner layer charges of Al atoms migrated to the outer layer, and the charges of Mg atoms accumulated significantly in the outer region of Al atoms. The Debye temperature of Mg9Al7 is higher than that of Mg11Al5 and Mg5Al3, indicating that it has better thermodynamic stability. Our findings would be helpful for the design of Mg-Al alloys with excellent mechanical and thermodynamic performances.

6.
World J Clin Cases ; 12(8): 1523-1529, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38576807

RESUMO

BACKGROUND: Eccrine porocarcinoma (EPC) is a rare skin tumor that mainly affects the elderly population. Tumors often present with slow growth and a good prognosis. EPCs are usually distinguished from other skin tumors using histopathology and immunohistochemistry. However, surgical management alone may be inadequate if the tumor has metastasized. However, currently, surgical resection is the most commonly used treatment modality. CASE SUMMARY: A seventy-four-year-old woman presented with a slow-growing nodule in her left temporal area, with no obvious itching or pain, for more than four months. Histopathological examination showed small columnar and short spindle-shaped cells; thus, basal cell carcinoma was suspected. However, immunohistochemical analysis revealed the expression of cytokeratin 5/6, p63 protein, p16 protein, and Ki-67 antigen (40%), and EPC was taken into consideration. The skin biopsy was repeated, and hematoxylin and eosin staining revealed ductal differentiation in some cells. Finally, the patient was diagnosed with EPC, and Mohs micrographic surgery was performed. We adapted follow-up visits in a year and not found any recurrence of nodules. CONCLUSION: This case report emphasizes the diagnosis and differentiation of EPC.

7.
JAMA Netw Open ; 7(4): e247361, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652478

RESUMO

IMPORTANCE: Postoperative delirium is a common and impactful neuropsychiatric complication in patients undergoing coronary artery bypass grafting surgery. Cognitive training may enhance cognitive reserve, thereby reducing postoperative delirium. OBJECTIVE: To determine whether preoperative cognitive training reduces the incidence of delirium in patients undergoing coronary artery bypass grafting. DESIGN, SETTING, and PARTICIPANTS: This prospective, single-blind, randomized clinical trial was conducted at 3 university teaching hospitals in southeastern China with enrollment between April 2022 and May 2023. Eligible participants included those scheduled for elective coronary artery bypass grafting who consented and enrolled at least 10 days before surgery. INTERVENTIONS: Participating patients were randomly assigned 1:1, stratified by site, to either routine care or cognitive training, which included substantial practice with online tasks designed to enhance cognitive functions including memory, imagination, reasoning, reaction time, attention, and processing speed. MAIN OUTCOMES AND MEASURES: The primary outcome was occurrence of delirium during postoperative days 1 to 7 or until hospital discharge, diagnosed using the Confusion Assessment Method or the Confusion Assessment Method for Intensive Care Units. Secondary outcomes were postoperative cognitive dysfunction, delirium characteristics, and all-cause mortality within 30 days following the operation. RESULTS: A total of 218 patients were randomized and 208 (median [IQR] age, 66 [58-70] years; 64 female [30.8%] and 144 male [69.2%]) were included in final analysis, with 102 randomized to cognitive training and 106 randomized to routine care. Of all participants, 95 (45.7%) had only a primary school education and 54 (26.0%) had finished high school. In the cognitive training group, 28 participants (27.5%) developed delirium compared with 46 participants (43.4%) randomized to routine care. Those receiving cognitive training were 57% less likely to develop delirium compared with those receiving routine care (adjusted odds ratio [aOR] 0.43; 95% CI, 0.23-0.77; P = .007). Significant differences were observed in the incidence of severe delirium (aOR, 0.46; 95% CI, 0.25-0.82; P = .01), median (IQR) duration of delirium (0 [0-1] days for cognitive training vs 0 [0-2] days for routine care; P = .008), and median (IQR) number of delirium-positive days (0 [0-1] days for cognitive training vs 0 [0-2] days for routine care; P = .007). No other secondary outcomes differed significantly. CONCLUSIONS AND RELEVANCE: In this randomized trial of 208 patients undergoing coronary artery bypass grafting, preoperative cognitive training reduced the incidence of postoperative delirium. However, our primary analysis was based on fewer than 75 events and should therefore be considered exploratory and a basis for future larger trials. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2200058243.


Assuntos
Ponte de Artéria Coronária , Delírio , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Delírio/prevenção & controle , Delírio/epidemiologia , Delírio/etiologia , Método Simples-Cego , Estudos Prospectivos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/epidemiologia , Ponte de Artéria Coronária/efeitos adversos , China/epidemiologia , Terapia Cognitivo-Comportamental/métodos , Treino Cognitivo
8.
Transpl Immunol ; : 102044, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38663757

RESUMO

BACKGROUND: Glutamine is crucial for the activation and efficacy of T cells, and may play a role in regulating the immune environment. This study aimed to investigate the potential role of glutamine in the activation and proliferation of induced regulatory T cells (iTregs). METHODS: CD4+CD45RA+T cells were sorted from peripheral blood mononuclear cells and cultured to analyze iTreg differentiation. Glutamine was then added to the culture system to evaluate the effects of glutamine on iTregs by determining oxidative phosphorylation (OXPHOS), apoptosis, and cytokine secretion. Additionally, a humanized murine graft-versus-host disease (GVHD) model was constructed to confirm the efficacy of glutamine-treated iTregs in vivo. RESULTS: After being cultured in vitro, glutamine significantly enhanced the levels of Foxp3, CTLA-4, CD39, CD69, IL-10, TGF-ß, and Ki67 (CTLA-4, IL-10, TGF-ß are immunosuppressive markers of iTregs) compared with that of the control iTregs (P < 0.05). Furthermore, the growth curve showed that the proliferative ability of glutamine-treated iTregs was better than that of the control iTregs (P < 0.01). Compared with the control iTregs, glutamine supplementation significantly increased oxygen consumption rates and ATP production (P < 0.05), significantly downregulated Annexin V and Caspase 3, and upregulated BCL2 (P < 0.05). However, GPNA significantly reversed the effects of glutamine (P < 0.05). Finally, a xeno-GVHD mouse model was successfully established to confirm that glutamine-treated iTregs increased the mice survival rate, delayed weight loss, and alleviated colon injury. CONCLUSION: Glutamine supplementation can improve the activity and immunosuppressive action of iTregs, and the possible mechanisms by which this occurs are related to cell proliferation, apoptosis, and OXPHOS.

9.
Emerg Microbes Infect ; 13(1): 2323153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38442029

RESUMO

The emergence of Anaplasma bovis or A. bovis-like infection in humans from China and the United States of America has raised concern about the public health importance of this pathogen. Although A. bovis has been detected in a wide range of ticks and mammals in the world, no genome of the pathogen is available up to now, which has prohibited us from better understanding the genetic basis for its pathogenicity. Here we describe an A. bovis genome from metagenomic sequencing of an infected goat in China. Anaplasma bovis had the smallest genome of the genus Anaplasma, and relatively lower GC content. Phylogenetic analysis of single-copy orthologue sequence showed that A. bovis was closely related to A. platys and A. phagocytophilum, but relatively far from intraerythrocytic Anaplasma species. Anaplasma bovis had 116 unique orthogroups and lacked 51 orthogroups in comparison to other Anaplasma species. The virulence factors of A. bovis were significantly less than those of A. phagocytophilum, suggesting less pathogenicity of A. bovis. When tested by specific PCR assays, A. bovis was detected in 23 of 29 goats, with an infection rate up to 79.3% (95% CI: 64.6% ∼94.1%). The phylogenetic analyses based on partial 16S rRNA, gltA and groEL genes indicated that A. bovis had high genetic diversity. The findings of this study lay a foundation for further understanding of the biological characteristics and genetic diversity of A. bovis, and will facilitate the formulation of prevention and control strategies.


Assuntos
Anaplasma , Genômica , Humanos , Animais , Filogenia , RNA Ribossômico 16S/genética , Anaplasma/genética , China/epidemiologia , Cabras , Variação Genética
10.
J Fluoresc ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514485

RESUMO

Latent fingerprints (LFPs) is one of the most important physical evidence in the criminal scene, playing an important role in forensic investigations. Therefore, developing highly sensitive and convenient materials for the visualization of LFPs is of great significance. We designed and synthesized an organic fluorescent molecule TP-PH with aggregation-induced enhanced emission (AIEE) activity. By simply soaking, blue fluorescent images with high contrast and resolution are readily developed on various surfaces including tinfoil, steel, glass and plastic. Remarkably, LFPs can be visualized within 5 min including the first-, second- and tertiary-level details. In addition, TP-PH exhibits interesting photoactivated fluorescence enhancement properties. Under irradiation of 365 nm UV light with a power density of 382 mW/cm2, the fluorescence quantum yield displays approximately 21.5-fold enhancement. Mechanism studies reveals that the photoactivated fluorescence is attributed to the irreversible cyclodehydrogenation reactions under UV irradiation. This work provides a guideline for the design of multifunctional AIEE fluorescent materials.

11.
Opt Express ; 32(5): 7220-7242, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439409

RESUMO

A lightfield camera prototype is constructed by directly coupling a liquid-crystal (LC) microlens array with an arrayed photosensitive sensor for performing a LC-guided refocusing-rendering imaging attached by computing disparity map and extracting featured contours of targets. The proposed camera prototype presents a capability of efficiently selecting the imaging clarity value of the electronic targets interested. Two coefficients of the calibration coefficient k and the rendering coefficient C are defined for quantitively adjusting LC-guided refocusing-rendering operations about the images acquired. A parameter Dp is also introduced for exactly expressing the local disparity of the electronic patterns selected. A parallel computing architecture based on common GPU through the OpenCL platform is adopted for improving the real-time performance of the imaging algorithms proposed, which can effectively be used to extract the pixel-leveled disparity and the featured target contours. In the proposed lightfield imaging strategy, the focusing plane can be easily selected and/or further adjusted by loading and/or varying the signal voltage applied over the LC microlenses for realizing a rapid or even intelligent autofocusing. The research lays a solid foundation for continuously developing or upgrading current lightfield imaging approaches.

12.
Nat Chem ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499848

RESUMO

Phase separation inside mammalian cells regulates the formation of the biomolecular condensates that are related to gene expression, signalling, development and disease. However, a large population of endogenous condensates and their candidate phase-separating proteins have yet to be discovered in a quantitative and high-throughput manner. Here we demonstrate that endogenously expressed biomolecular condensates can be identified across a cell's proteome by sorting proteins across varying oligomeric states. We employ volumetric compression to modulate the concentrations of intracellular proteins and the degree of crowdedness, which are physical regulators of cellular biomolecular condensates. The changes in degree of the partition of proteins into condensates or phase separation led to varying oligomeric states of the proteins, which can be detected by coupling density gradient ultracentrifugation and quantitative mass spectrometry. In total, we identified 1,518 endogenous condensate proteins, of which 538 have not been reported before. Furthermore, we demonstrate that our strategy can identify condensate proteins that respond to specific biological processes.

13.
Anesth Analg ; 138(5): 1031-1042, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335150

RESUMO

BACKGROUND: Postoperative delirium (POD) is a common form of postoperative brain dysfunction, especially in the elderly. However, its risk factors remain largely to be determined. This study aimed to investigate whether (1) preoperative diabetes is associated with POD after elective orthopedic surgery and (2) intraoperative frontal alpha power is a mediator of the association between preoperative diabetes and POD. METHODS: This was a prospective matched cohort study of patients aged 60 years or more, with a preoperative diabetes who underwent elective orthopedic surgery. Nondiabetic patients were matched 1:1 to diabetic patients in terms of age, sex, and type of surgery. Primary outcome was occurrence of POD, assessed using the 3-minute Diagnostic Confusion Assessment Method (3D-CAM) once daily from 6 pm to 8 pm during the postoperative days 1-7 or until discharge. Secondary outcome was the severity of POD which was assessed for all participants using the short form of the CAM-Severity. Frontal electroencephalogram (EEG) was recorded starting before induction of anesthesia and lasting until discharge from the operating room. Intraoperative alpha power was calculated using multitaper spectral analyses. Mediation analysis was used to estimate the proportion of the association between preoperative diabetes and POD that could be explained by intraoperative alpha power. RESULTS: A total of 138 pairs of eligible patients successfully matched 1:1. After enrollment, 6 patients in the diabetes group and 4 patients in the nondiabetes group were excluded due to unavailability of raw EEG data. The final analysis included 132 participants with preoperative diabetes and 134 participants without preoperative diabetes, with a median age of 68 years and 72.6% of patients were female. The incidence of POD was 16.7% (22/132) in patients with preoperative diabetes vs 6.0% (8/134) in patients without preoperative diabetes. Preoperative diabetes was associated with increased odds of POD after adjustment of age, sex, body mass index, education level, hypertension, arrhythmia, coronary heart disease, and history of stroke (odds ratio, 3.2; 95% confidence interval [CI], 1.4-8.0; P = .009). The intraoperative alpha power accounted for an estimated 20% (95% CI, 2.6-60%; P = .021) of the association between diabetes and POD. CONCLUSIONS: This study suggests that preoperative diabetes is associated with an increased risk of POD in older patients undergoing major orthopedic surgery, and that low intraoperative alpha power partially mediates such association.


Assuntos
Delírio , Diabetes Mellitus , Delírio do Despertar , Procedimentos Ortopédicos , Idoso , Humanos , Feminino , Masculino , Delírio do Despertar/diagnóstico , Delírio do Despertar/epidemiologia , Delírio do Despertar/etiologia , Estudos de Coortes , Estudos Prospectivos , Delírio/diagnóstico , Delírio/etiologia , Delírio/epidemiologia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Procedimentos Ortopédicos/efeitos adversos , Diabetes Mellitus/diagnóstico , Fatores de Risco
14.
J Org Chem ; 89(6): 4037-4041, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38389323

RESUMO

This study delves into the ion recognition capabilities of a novel host molecule, emphasizing the role of conformational locking in dictating ion selectivity. By employing the Buchwald-Hartwig cross-coupling reaction, we have notably shifted the ion receptor's selectivity from K+ to Na+. The findings are supported by computational simulations that reveal differences in binding energies and molecular strain impacting ion recognition. This innovative structural modification broadens the scope for alterations at the calix[4]arene's lower rim, paving the way for new methods and strategies in modulating ion recognition selectivity.

15.
Cell Death Dis ; 15(2): 146, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360839

RESUMO

Tuberous sclerosis complex 1 (TSC1) plays important roles in regulating innate immunity. However, the precise role of TSC1 in macrophages in the regulation of oxidative stress response and hepatic inflammation in liver ischemia/reperfusion injury (I/R) remains unknown. In a mouse model of liver I/R injury, deletion of myeloid-specific TSC1 inhibited AKT and MST1 phosphorylation, and decreased NRF2 accumulation, whereas activated TLR4/NF-κB pathway, leading to increased hepatic inflammation. Adoptive transfer of AKT- or MST1-overexpressing macrophages, or Keap1 disruption in myeloid-specific TSC1-knockout mice promoted NRF2 activation but reduced TLR4 activity and mitigated I/R-induced liver inflammation. Mechanistically, TSC1 in macrophages promoted AKT and MST1 phosphorylation, and protected NRF2 from Keap1-mediated ubiquitination. Furthermore, overexpression AKT or MST1 in TSC1-knockout macrophages upregulated NRF2 expression, downregulated TLR4/NF-κB, resulting in reduced inflammatory factors, ROS and inflammatory cytokine-mediated hepatocyte apoptosis. Strikingly, TSC1 induction in NRF2-deficient macrophages failed to reverse the TLR4/NF-κB activity and production of pro-inflammatory factors. Conclusions: Macrophage TSC1 promoted the activation of the AKT/MST1 signaling pathway, increased NRF2 levels via reducing Keap1-mediated ubiquitination, and modulated oxidative stress-driven inflammatory responses in liver I/R injury. Our findings underscore the critical role of macrophage TSC1 as a novel regulator of innate immunity and imply the therapeutic potential for the treatment of sterile liver inflammation in transplant recipients. Schematic illustration of macrophage TSC1-mediated AKT/MST1/NRF2 signaling pathway in I/R-triggered liver inflammation. Macrophage TSC1 can be activated in I/R-stressed livers. TSC1 activation promotes phosphorylation of AKT and MST1, which in turn increases NRF2 expression and inhibits ROS production and TLR4/NF-κB activation, resulting in reduced hepatocellular apoptosis in I/R-triggered liver injury.


Assuntos
Traumatismo por Reperfusão , Esclerose Tuberosa , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Esclerose Tuberosa/metabolismo , Fígado/metabolismo , Transdução de Sinais , Macrófagos/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/metabolismo
16.
Front Neurorobot ; 18: 1351939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352724

RESUMO

The transportation of hazardous chemicals on roadways has raised significant safety concerns. Incidents involving these substances often lead to severe and devastating consequences. Consequently, there is a pressing need for real-time detection systems tailored for hazardous material vehicles. However, existing detection methods face challenges in accurately identifying smaller targets and achieving high precision. This paper introduces a novel solution, HMV-YOLO, an enhancement of the YOLOv7-tiny model designed to address these challenges. Within this model, two innovative modules, CBSG and G-ELAN, are introduced. The CBSG module's mathematical model incorporates components such as Convolution (Conv2d), Batch Normalization (BN), SiLU activation, and Global Response Normalization (GRN) to mitigate feature collapse issues and enhance neuron activity. The G-ELAN module, building upon CBSG, further advances feature fusion. Experimental results showcase the superior performance of the enhanced model compared to the original one across various evaluation metrics. This advancement shows great promise for practical applications, particularly in the context of real-time monitoring systems for hazardous material vehicles.

17.
Apoptosis ; 29(5-6): 799-815, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38347337

RESUMO

PANoptosis is a form of inflammatory programmed cell death that is regulated by the PANoptosome. This PANoptosis possesses key characteristics of pyroptosis, apoptosis, and necroptosis, yet cannot be fully explained by any of these cell death modes. The unique nature of this cell death mechanism has garnered significant interest. However, the specific role of PANoptosis-associated features in gastric cancer (GC) is still uncertain. Patients were categorized into different PAN subtypes based on the expression of genes related to the PANoptosome. We conducted a systematic analysis to investigate the variations in prognosis and tumor microenvironment (TME) among these subtypes. Furthermore, we developed a risk score, called PANoptosis-related risk score (PANS), which is constructed from genes associated with the PANoptosis. We comprehensively analyzed the correlation between PANS and GC prognosis, TME, immunotherapy efficacy and chemotherapeutic drug sensitivity. Additionally, we performed in vitro experiments to validate the impact of Keratin 7 (KRT7) on GC. We identified two PAN subtypes (PANcluster A and B). PANoptosome genes were highly expressed in PANcluster A. PANcluster A has the characteristics of favorable prognosis, abundant infiltration of anti-tumor lymphocytes, and sensitivity to immunotherapy, thus it was categorized as an immune-inflammatory type. Meanwhile, our constructed PANS can effectively predict the prognosis and immune efficacy of GC. Patients with low PANS have a good prognosis, and have the characteristics of high tumor mutation load (TMB), high microsatellite instability (MSI), low tumor purity and sensitivity to immunotherapy. In addition, PANS can also identify suitable populations for different chemotherapy drugs. Finally, we confirmed that KRT7 is highly expressed in GC. Knocking down the expression of KRT7 significantly weakens the proliferation and migration abilities of GC cells. The models based on PANoptosis signature help to identify the TME features of GC and can effectively predict the prognosis and immune efficacy of GC. Furthermore, the experimental verification results of KRT7 provide theoretical support for anti-tumor treatment.


Assuntos
Imunoterapia , Neoplasias Gástricas , Microambiente Tumoral , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/diagnóstico , Humanos , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Queratina-7/genética , Queratina-7/metabolismo , Apoptose/genética
19.
Angew Chem Int Ed Engl ; 63(9): e202317613, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38195970

RESUMO

Most of the anticancer compounds synthesized by chemists are primarily evaluated for their direct cytotoxic effects at the cellular level, often overlooking the critical role of the immune system. In this study, we developed a patient-derived, T-cell-retaining tumor organoid model that allows us to evaluate the anticancer efficacy of chemical drugs under the synergistic paradigm of antigen-specific T-cell-dependent killing, which may reveal the missed drug hits in the simple cytotoxic assay. We evaluated clinically approved platinum (Pt) drugs and a custom library of twenty-eight PtIV compounds. We observed low direct cytotoxicity of Pt drugs, but variable synergistic effects in combination with immune checkpoint inhibitors (ICIs). In contrast, the majority of PtIV compounds exhibited potent tumor-killing capabilities. Interestingly, several PtIV compounds went beyond direct tumor killing and showed significant immunosynergistic effects with ICIs, outstanding at sub-micromolar concentrations. Among these, Pt-19, PtIV compounds with cinnamate axial ligands, emerged as the most therapeutically potent, demonstrating pronounced immunosynergistic effects by promoting the release of cytotoxic cytokines, activating immune-related pathways and enhancing T cell receptor (TCR) clonal expansion. Overall, this initiative marks the first use of patient-derived immunocompetent tumor organoids to explore and study chemotherapy, advancing their path toward more effective small molecule drug discovery.


Assuntos
Antineoplásicos , Humanos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Platina/química , Linfócitos T , Organoides
20.
Gene ; 897: 148050, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042211

RESUMO

BACKGROUND: more and more studies have indicated that autophagy plays a crucial role in hepatocellular carcinoma (HCC) in recent years. Hence, our study aimed to establish a prognostic signature for HCC based on autophagy-related genes (ARGs) in order to predict the prognosis of HCC. METHODS: All original gene-expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). ARGs were obtained from the Human Autophagy Database (HADb). Univariate Cox regression analysis, Least absolute shrinkage and selection operator (LASSO) and Principal Component Analysis (PCA) analysis were performed to identify and validate the validity and reliability of our eight-gene signature, Gene Set Enrichment Analysis (GSEA) was used to perform enrichment analysis by comparing high-risk and low-risk groups in KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) gene sets. Finally, we verified the gene (NPC1) by functional experiments in vitro and in vivo. RESULTS: 8 ARGs were identified for establishing an eight-gene signature. Then, we validated our eight-gene signature in training, internal, external, and entire testing cohorts. Besides, we also explored the relationships between the eight-gene signature and immune infiltration or immune checkpoints. We also identified NPC1 was closely related to Activated CD4 T cell and Type I IFN Response, and higher expressed level of HCC patients was more sensitive to CTLA4 and TNFRSF9 immune checkpoint inhibitors. NPC1 is highly expressed in HCC cells and tumor tissues, which promotes the proliferation, migration, and invasion of tumor cells by activating autophagy.. CONCLUSION: 8 ARGs were used to establish a gene signature to predict the prognosis of HCC. we inferred that NPC1 can promote late autophagy, it could be a future novel therapeutic target of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína C1 de Niemann-Pick , Humanos , Autofagia , Carcinoma Hepatocelular/genética , Transformação Celular Neoplásica , Neoplasias Hepáticas/genética , Proteína C1 de Niemann-Pick/metabolismo , Prognóstico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA